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LETTER TO THE EDITOR 

The asphericity of random walks 
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Received 21 November 1985 

Abstract. The asphericity, (A) ,  of a random walk is defined and calculated for non-self- 
avoiding walks. The definition of (A )  generalises to self-avoiding walks, percolating clusters 
and other fractal objects and thus provides a generalised quantitative measure of the 
departure from spherical symmetry of the gross shape of these objects. 

That the gross shape of linear polymers and random walks is not spherical has been 
known from some time (Kuhn 1934, Solc 1971). Numerical studies (Bishop and 
Michels 1985) have established that the radii of gyration of these objects are not equal, 
but possess ratios that approach limiting values significantly different from unity in 
the large system limit. What has been lacking up until now are analytical results for 
the anisotropy of these physically interesting fractal objects in various spatial 
dimensions. In this letter, we define and describe a quantity that measures the aspheric- 
ity of a random walk and implement the calculation of this quantity for an unrestricted 
random walk, or equivalently, a self-intersecting chain polymer. This asphericity 
parameter can, in principle, be calculated for self-avoiding walks as well and provides 
a natural description of deviations from spherically symmetric shapes applicable to a 
wide variety of fractal objects. 

We begin by defining the moment of inertia tensor for one configuration of a 
random walk (Bishop and Michels 1985). Imagining that a unit mass is located at 
every one of the N steps of the walk, we can construct a tensor with components 

where Xi ,  is the ith Cartesian component of the position vector of the Ith mass and xi 
is the average over the walk of that component. 

For three-dimensional walks, the matrix has three eigenvalues, R: Ri and R:, 
the three principal radii of gyration squared of the walk. The matrix also has three 
invariants, Tr, M and D, where Tr and D are the trace and determinant, respectively, 
and M is the sum of its three minors. We have 
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A brief consideration of the characteristic equation of reveals that 

Tr=  R:+ R:+ R: 

D = R:RiR: 

M = R:R:+ RiR:+ RiR:. (3) 

Thus, we can now define another invariant quantity which measures the walk’s deviation 
from spherical symmetry 

Tr2 - 3 M = ;[ ( R i  - R:)2 + (R:  - R:)2 + (R:  - R:)2] .  (4) 

It is important to realise that the invariants of the inertia tensor are independent of 
the direction of a particular walk and consequently any characteristic anisotropy will 
persist in the averaging process. 

We now define the ‘asphericity’ (A) by averaging (4) over all random walks: 

The normalisation has been chosen so that ( A )  ranges from zero for spherically 
symmetric objects to 1 for extremely elongated or ‘cigar’ shaped objects. 

Thus, the parameter ( A )  is a useful measure of the instantaneous anisotropy or 
deviation from sphericity of the walk. Moreover, it can be calculated straightforwardly 
since it involves taking averages over products of the matrix elements of This will 
not be the case if the radii of gyration are chosen to describe the anisotropy of the 
walk. These quantities are extremely cumbersome to average because of their compli- 
cated dependence on the invariants. Indeed, for spatial dimension greater than four, 
the roots themselves must be determined numerically. In contrast, however, ( A )  can 
be calculated quite easily, and for unrestricted walks, it has an exact expression which 
we now derive. 

For unrestricted walks, the linear topology of the walk allows us to express the 
average over all configurations of an N step walk of any quantity f(Xi,, X,, . . . Xik) 
as follows: 

L L  x,x‘ “ I +  + n t + i = N  

where P stands for all permutations of the XI, Tnt+,(X,, X,,,) is the number of n,,, step 
walks between X, and XI+, and NT is the total number of N step walks. The average 
is much more easily computed using the generating function for a grand canonical 
ensemble of walks (Feller 1950, Fisher 1984, de Gennes 1979). It is easy to show that 
the right-hand side of ( 6 )  is simply the coefficient of Z N  of 

p C(X, Xil). . . C(Xik,X’)f(Xi,. . . Xik) 
x, ... x, 
X,X’ 

where C ( X i ,  Xj) is the generator of random walks 
W 

c(xi,  x j )  = c rn(xi, q z n .  
n =O 

In the continuum limit (Feller 1950, Fisher 1984) 

(7) 

exp [ ik (Xi - Xj)] 
(2.rrI3 I dk ( l -qz)+(k*/q)  

C(Xi, Xj) = - 
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where the integral is over a Brillouin zone and q is the coordination number of the 
lattice on which the walk is taken. Using (7) and (9), we find the averages necessary 
to obtain ( A )  easy to evaluate and for a three-dimensional unrestricted walk, ( A )  = $. 

This quantity, as noted earlier, can be calculated for self-avoiding walks or other 
fractal objects. The calculation will be significantly more difficult and numerical 
procedures or techniques as the E expansion will, no doubt, be required. Our exact 
result, however, will be a useful guide for such future numerical studies. 

The application of interdimensional expansion will involve the generalisation of 
the quantity ( A )  to d dimensions. This generalisation is straightforward. The invariants 
of interest are the trace of and the generalisation of M. Denoting the d eigenvalues 
of T by A I  . . . A d ,  if we define 

i f J  

and 

( [ i ( d  - 1) Tr2- dM,j]) 
( A d )  = i( d - 1)(Tr2) 

then 

measures the asphericity of the d-dimensional fractal object. Again, as in the three- 
dimensional case, 0 d ( A d )  d 1. For unrestricted walks, we find ( A d )  = 2( d + 2)/(5d $4) 
which has a limit of f as d +CO. We note that these results for ( A d )  have relevance to 
the self-avoiding walk problem for d > 4 where the distinction between restricted and 
unrestricted walks becomes irrelevant. We also conjecture that the results for the 
unrestricted walk have application to the shapes of percolating clusters for d > 6, the 
case when the cluster distribution can be approximated by Gaussian statistics. 

Although there is some arbitrariness in defining the ‘shapes’ of these random objects, 
we propose that the asphericity parameter discussed here for random walks is an 
excellent measure of an object’s departure from sphericity. It can be used to investigate 
the shapes of percolating clusters or other fractals as well. 
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normalisation. One of the authors (GG) expresses his appreciation to the condensed 
matter group in the Physics Department at UCLA for making his visit there, where 
the bulk of this work was done, a most enjoyable one. This work was supported by 
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